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CURVE FIT TECHNIQUE FOR A SMOOTH

CURVE USING GAUSSIAN SECTIONS

INTRODUCTION

In optics, it is often necessary to determine the total luminous flux of a beam
by use of sampling beam receivers. If the beam is circular in cross section and

it is desirable to approximate this with a Gaussian energy distribution along

any diameter, then it is referred to as Gaussian distribution. Receivers placed

on a diameter of this beam provide discrete samples so that the total amount of
flux may be calculated. Thus, a technique that forms a smooth Gaussian patch

between any number of discrete sample points would be useful for a total

incoming flux approximation. This report deals with the development of this

technique.

DISCUSSION

Development of First Gaussian Section

To simplify the fitting technique, two sampling cases are assumed. One is
that one sample point has an intensity greater than all other sample points, and

the other is that two adjacent sample points have the same luminous intensity.

These sampling cases lead to two different beginnings for the Gaussian sections

surrounding the peak point and will be dealt with separately.

If there is a single peak point, represented by (xO, yo), the Gaussian sec-
tion that spans to the next point on either side must be found. A Gaussian sec-

tion (Gn) has the form

k n)2 Equation (1)

Gn Yk Cne n
s n
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where

(xk, Yk) are the coordinates of any point which the section

passes through

un is the mean point of the Gaussian section

Sn is the standard deviation of the Gaussian section

Cn is the normalizing constant for the Gaussian section.

The peak point of any Gaussian has a slope of 0, therefore, the first section

must have its peak at (xo, yo). Here, the exponential is at its maximum, 1,

therefore the exponent is 0, leading us to realize that

u1 = x0  Equation (2)

Now, since the exponential has a value of 1, the Gaussian simplifies to

Cy 0 =OEquation (3)

Rearranging (1) for the standard deviation and letting (xl,yl) be the other

boundary the Gaussian passes through, we have

(xI -Ul)2

Sl = 2(ln c1 - in yl) Equation (4)

and equations (2) through (4) describe the first Gaussian section.

If two points have the same intensity, they can be assumed to be boundaries of

the same Gaussian. Then the mean of the section is the midpoint between the two

sample points. Here (x1, yl) represents a second point with the same intensity

as the first, and it is realized that

u1  (xI + Xo)/2 Equation (5)
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To simplify matters, an assumption will be made that the measured Intensities at

these points are 90% of the peak intensity. This means that

C1 - yl/0.9 - Yo/0.9  Equation (6)

By using equation (4), s, can now be found. Thus, equations (4) through (6)

decribe the first Gaussian section in the second case.

Development of Subsequent Sections

After the first Gaussian section is fitted, subsequent Gaussian sections
must be fitted to assure a smooth curve. A smooth curve is one where both func-

tions have equal values and equal slopes at the point of junction. This con-

dition on the second section leads to

G'n(xk) " G'n+l(xk) Equation (7)

Gn is the Gaussian section ending at (xk, yk) and Gn+1 is the Gaussian section
extending from (xk, Yk) to (xk+l, yk+l1). Taking the derivative of Gn from (1)

at the common boundary point (xk, YO we have

:- (xk - Un)
Gn'(xk) " -Yk. Equation (8)

Sn2

Performing the same derivative for the Gaussian Gn+1 at (xk, Yk) we have

(xk - un+1)

Gn+l'(xk) -Yk Equation (9)
(Sn+1)2

.
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Using equation (7), equations (8) and (9) may be set equal to each other. From

'. this, the -Yk factors may be cancelled out and the equation may then be

rearranged to solve for Sn+1

(xk - un+1)
(Sn+1)2  - - - n2  Equation (10)

(xk - un)

- which relates Sn+1 to Sn. However, this equation has the term un+1 which has

" yet to be found. To do so, we take the Gaussian Gn+1 previously defined as

being bounded by the points (Xk, y) and (xk+l, Yk+1). The above Gaussian must

then satisfy the following condition:

xk  - n+1)2 .(.Xk+1 - Un+1 2

Yk+le  n+1 =yke 2Sn+1 Equation (11)

From this we take the natural logarithm of both sides of the equation and

rearrange it to isolate un+l

2(sn+) 2(ln Yk+l - In yk) =

%. . 2 . U~l)2Equation (12)
(xk - un+1)2 - (xk+1 - un+1) 2

Substituting the general form for sn+l (from equation (10)), and rearranging

terms we have

2xksn 2(ln Yk+1 - in Yk) - (Xk2 - Xk+12 )(Xk - un)
Un+l " Equation (13)

2Sn2(In yk+l - in yk) - 2 (xk - Xk+l)(Xk - Un)

4
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This allows Un+1 to be found solely in terms of known quantities. Then Un+1 may

be substituted into equation (10) to find Sn+l. These, in turn, may be used in
equation (1), along with the point (xk, Yk), to solve for Cn+1. Thus we have a

method of finding a Gaussian solely from the preceding Gaussian and its boundary

points. This method will work for any case and is therefore general.

Computer Testing (Sample run, figures 1 and 2)

To facilitate validation of the curve-fit technique developed, a computer

program was written to perform the task of finding the Gaussian sections of a

curve-fit problem by the methods given here. (The program, run on a Tektronix

GS-4052 System, is listed in figure 2.)

The data used for the sample run consisted of the peak, 90%, 50%, and 10% points

of a Gaussian curve with u - 0, s = 1, c - 0.398942. The printout from a sample

run with first one side's curve fit and then the other side's curve fit is shown

in figure 1.

Section Mean Stan. Dev Norm Cons

1 0 0.999834481528 0.398942
2 0 0.999668990452 0.398962878929
3 -4.415707426E-4 0.999712877896 0.399308591275

Section Mean Stan. Dev Norm Cons

1 0 0.999834481528 0.398942
2 0 0.999668990452 0.398962878929
3 4.415707426E-4 0.999712877896 0.399308591275

Figure 1. Output from sample curve-fit program.
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The sample run output seems quite accurate. To determine the accuracy, a graph

was prepared calculating the percent deviation of the curve-fitted curve with

the original curve, and the results are shown in figure 3.

0.2

0.1

40

0 .. _.___ __ _ __ __ _

-3 -2 -1 0 1 2 3

Figure 3. Graph of percent deviation as a function of x.

The greatest deviation is under .15%, an error small enough to be attributed to

computer rounding and sample error.

CONCLUSIONS AND RECOMMENDATIONS

The above described technique has led to a deviation from a norm of no greater

than .15%. This devation is of a small enough magnitude to validate the

developed method of curve-fitting. Furthermore, the algorithm that does the

fitting is simple enough to be used on a programmable calculator.
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